2 changed files with 80 additions and 0 deletions
@ -0,0 +1,4 @@
@@ -0,0 +1,4 @@
|
||||
p8b: |
||||
javac Problem008b.java && java Problem008b |
||||
clean: |
||||
rm -rf *.class |
@ -0,0 +1,76 @@
@@ -0,0 +1,76 @@
|
||||
import java.io.*; |
||||
import java.util.*; |
||||
|
||||
/** |
||||
* Finding the largest 13-digit sequence in a 1,000 digit number. |
||||
* |
||||
* This question shows some of the interesting traits of numbers - |
||||
* most of these 13-digit sequences start with 0s or 1s, because in a |
||||
* given sequence of 13 number, you're bound to have at least one or two 1s and 0s, |
||||
* which will inevitably go at the beginning. |
||||
* |
||||
* The longest sequence starts with a 4, meaning there is a long string of digits |
||||
* no smaller than 4. |
||||
* |
||||
* Note that the biggest integer is just a hair over 2^32 |
||||
* so this is very much a types question. |
||||
* Longs over ints. |
||||
* |
||||
* log2(4702924800) = 32.13 |
||||
*/ |
||||
|
||||
public class Problem008b { |
||||
public static void main(String[] args) throws IOException { |
||||
|
||||
String num = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450"; |
||||
|
||||
int nchars = 13; |
||||
|
||||
// integers only store numbers as large as a billion
|
||||
// 13 digit numbers are going to make funny thing happen if we use ints.
|
||||
|
||||
Queue<Integer> q = new LinkedList<Integer>(); |
||||
Set<Long> products = new TreeSet<Long>(); // <-- use longs to avoid funny business
|
||||
|
||||
// Turn the number into a char array
|
||||
char[] numarr = num.toCharArray(); |
||||
|
||||
// Load up the queue to begin with
|
||||
// c goes from 0 to 12
|
||||
for(int c=0; c<nchars; c++) { |
||||
Integer z = Character.getNumericValue(numarr[c]); |
||||
q.add(z); |
||||
} |
||||
|
||||
// Save products of initial string
|
||||
saveProduct(q, products); |
||||
|
||||
// Run through all the remaining 13 digit numbers,
|
||||
// c goes from 13 to 1000 (total of 987 elements)
|
||||
for(int c=nchars; c<num.length(); c++) { |
||||
q.remove(); |
||||
|
||||
Integer z = Character.getNumericValue(numarr[c]); |
||||
q.add(z); |
||||
|
||||
// Save products of next string
|
||||
saveProduct(q, products); |
||||
} |
||||
System.out.println(products); |
||||
} |
||||
|
||||
public static void saveProduct(Queue<Integer> q, Set<Long> products) { |
||||
StringBuffer sb = new StringBuffer(); |
||||
for(Integer iq : q) { |
||||
sb.append(iq.toString()); |
||||
} |
||||
String qstring = sb.toString(); |
||||
|
||||
Long prod = new Long(1); |
||||
for(Integer iq : q) { |
||||
prod *= iq; |
||||
} |
||||
products.add(prod); |
||||
|
||||
} |
||||
} |
Loading…
Reference in new issue